Minimum principles for the trajectories of systems governed by rate problems
نویسندگان
چکیده
Recently, Mielke and Ortiz [2007. A class of minimum principles for characterizing the trajectories of dissipative systems, ESAIM Control Optim. Calc. Var., in press] have proposed a variational reformulation of evolutionary problems that characterizes entire trajectories of a system as minimizers of certain energy– dissipation functionals. In this paper we present two examples of energy–dissipation functionals for which relaxations and optimal scalings can be rigorously derived. The first example concerns a one-dimensional bar characterized by a quadratic dissipation function and a bistable energy density; the second example concerns the coarsening kinetics of island growth in thin films exhibiting a preferred slope. In both cases, we present closed-form relaxations in the local limit of the problem and optimal scaling relations for the nonlocal problems. The relaxations rigorously characterize macroscopic properties of complex microstructural evolution by means of well-posed effective problems. The scaling relations rigorously characterize some average properties of the coarsening kinetics of the systems and lead to predictions on the growth exponents. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Measuring the Similarity of Trajectories Using Fuzzy Theory
In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...
متن کاملA Class of Minimum Principles for Characterizing the Trajectories and the Relaxation of Dissipative Systems
This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under...
متن کاملOptimal Control of Light Propagation Governed by Eikonal Equation within Inhomogeneous Media Using Computational Adjoint Approach
A mathematical model is presented in the present study to control the light propagation in an inhomogeneous media. The method is based on the identification of the optimal materials distribution in the media such that the trajectories of light rays follow the desired path. The problem is formulated as a distributed parameter identification problem and it is solved by a numerical met...
متن کاملAnalytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot
The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...
متن کاملPontryagin's Minimum Principle for Fuzzy Optimal Control Problems
The objective of this article is to derive the necessary optimality conditions, known as Pontryagin's minimum principle, for fuzzy optimal control problems based on the concepts of differentiability and integrability of a fuzzy mapping that may be parameterized by the left and right-hand functions of its $alpha$-level sets.
متن کامل